Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Basic and Clinical Neuroscience. 2011; 2 (3): 21-26
in English | IMEMR | ID: emr-191851

ABSTRACT

Introduction: It has shown that listening to Mozart music can potentiate spatial tasks in human; and reduce seizure attacks in epileptic patients. A few studies have reported the effects of prenatal plus postpartum exposure of mice to the Mozart music on brain-drived neurotrophic factor [BDNF] in the hippocampus. Here we investigated the effect of postpartum exposure to The Mozart music on BDNF concentration in the hippocampus of rat. Methods: Thirty male one day old newborn Wistar rats divided randomly in two equal experimental and control groups. Experimental group exposed to slow rhythm Mozart music [Mozart Sonata for two pianos KV 448, 6 hour per day; sound pressure levels, between 80 and 100 dB] for 60 successive days. The control group was kept in separate room with housing conditions like experimental group except music exposure. After 60 days the rats were euthanized and hippocampuses extracted; then the content of BDNF protein was measured using ELISA sandwich method. Results: Data analysis revealed that rats exposed to Mozart Sonata music had significantly increased BDNF content in the hippocampus as compared to control rats [P +/- 0.01]. The concentrations of BDNF were 86.30 +/- 2.26 and 94.60 +/- 6.22 ng/g wet weight in control and music exposure groups respectively. Discussion: Exposure to the Mozart music early in life can increase the BDNF concentration in the hippocampus in rats

2.
IBJ-Iranian Biomedical Journal. 2010; 14 (4): 142-149
in English | IMEMR | ID: emr-104205

ABSTRACT

Recent clinical studies of treating traumatic brain injury [TBI] with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells [BMSC] and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor [G-CSF], in rats with a cortical compact device. Forty adult male Wistar rats were injured with controlled cortical impact device and divided randomly into four groups. The treatment groups were injected with 2 x 10[6] intravenous bone marrow stromal stem cell [n = 10] and also with subcutaneous G-CSF [n = 10] and sham-operation group [n = 10] received PBS and [bromodeoxyuridine [Brdu]] alone, i.p. All injections were performed 1 day after injury into the tail veins of rats. All cells were labeled with Brdu before injection into the tail veins of rats. Functional neurological evaluation of animals was performed before and after injury using modified neurological severity scores [mNSS]. Animals were sacrificed 42 days after TBI and brain sections were stained by Brdu immunohistochemistry. Statistically, significant improvement in functional outcome was observed in treatment groups compared with control group [P<0.01]. mNSS showed no significant difference between the BMSC and G-CSF-treated groups during the study period [end of the trial]. Histological analyses showed that Brdu-labeled [MSC] were present in the lesion boundary zone at 42[nd] day in all injected animals. In our study, we found that administration of a bone marrow-stimulating factor [G-CSF] and BMSC in a TBI model provides functional benefits

SELECTION OF CITATIONS
SEARCH DETAIL